MAYER BROWN

Hydrogen – Hot Topics Arbitration Breakfast

Moderator: Lisa Dubot

Speakers:

Julia Humpidge (HKA) Dr. Christine Merkel (Mayer Brown) Valesca Molinari (Sunfire) Luiz Aboim (Mayer Brown) Anja Ipp (Climate Change Counsel) Caroline von Götz (Mayer Brown)

Hydrogen

• Why:

- Highly versatile energy vector
- No greenhouse gases at the point of use
- High energy per unit mass (energy density)
- o Burns to reach high temperatures
- Can be stored in large quantities
- Possible uses: industry, power generation, transport, domestic heating

• Why not:

- Low density means large volume needed for a given mass – not ideal for cars etc.
- Costs of liquefying H₂ prohibitive 30% of total energy content used to liquefy
- Generating hydrogen requires a large amount of energy

Hydrogen "colours"

HK >A

How grey, blue and green hydrogen are produced

Thermochemical Plant

- Feed:
 - Natural Gas (CH₄) and Water (H₂O)
- Chemical Reaction:
 - Steam reforming $CH_4+H_2O(+heat) \rightarrow CO+3H_2$
 - Water gas shift reaction $CO+H_2O \rightarrow CO_2+H_2$ (+small amount of heat)
- Physical State:
 - o Gas to gas
- Storage Properties:
 - o Gas high-pressure 345 690 bar
 - Liquid cryogenic temperature below -253 °C
- Key Elements:
 - o Reformer design

HK>A

Electrolysis Plant

- Feed:
 - Water (H_2O) and electricity
- Physical State:
 - o Liquid to gas
- Electrolyte:
 - o Liquid e.g. potassium hydroxide (KOH)
 - Solid e.g. speciality plastic material or ceramic material
- Key Elements:
 - Electrolyte and membrane
 - o Rare metals

Transport and Storage

- Transport Challenges:
 - Liquid hydrogen has highest production cost but lowest transportation cost
 - Pipelines require high capital investment
 - Delivery by tube trailer also expensive due to loads limited by low density of H₂
- Storage Properties:
 - o Gas: high-pressure 345 690 bar
 - Liquid: cryogenic temperature below -253 °C

Technical Issues

- Scale up of Production:
 - Production currently from a few KW to 100MW
- Metallurgy:
 - o Hydrogen embrittlement
 - Material properties at cryogenic temperatures
 - o Permeability
- Safety and Environmental Issues across all aspects of the hydrogen economy i.e. generation, storage, transmission and usage:
 - o Fire
 - o Explosion
 - Hydrogen leakage greenhouse gas effect
- Evolving technology often unproven:
 - New materials e.g. high performance composites, metal hybrids
 - o Production technologies e.g. photolytic

How it can go wrong

- Plant design
- During normal operation
- Maintenance
- Non-routine operations
- Defects
- Modifications
- Poor storage
- Sabotage

HKX

