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ARTIFICIAL INTELLIGENCE IN 
PHARMACEUTICALS, BIOLOGICS, AND 

MEDICAL DEVICES:  PRESENT AND FUTURE 
REGULATORY MODELS 

David W. Opderbeck* 

INTRODUCTION 

Artificial intelligence (AI) and AI-assisted technologies are set to 
transform the pharmaceutical, biologic, and medical device industries.  AI is 
accelerating a convergence in the pharmaceutical and medical device 
industries and, in the health-care industry more broadly, is similar to the 
convergence of the media, entertainment, and communications industries.1  
For media and communications, AI-fueled convergence might mean new 
video entertainment generated on the fly or sophisticated, analytical, 
autonomous versions of the AI-generated auto-replies that have started to 
show up in our email and text apps over the past year, reducing the drudgery 
of clearing an inbox.2  For health care, big datasets and complex algorithms 
will integrate the development and delivery of small- and large-molecule 
drugs, genetic therapies, and medical devices tailored to specific user profiles 
and even to individual consumers, with dynamic, real-time updates and 
adjustments.3  The lines between software code, device, and drug will blur, 
and new regulatory models will be required.  As a recent “Global Life 
 

*  Professor of Law, Seton Hall University Law School and Director, Gibbons Institute of 
Law, Science & Technology.  Thanks to Carl Coleman, Frank Pasquale, John Jacobi, Ari 
Waldman, Jordan Paradise, and Dr. Tina Morrison for helpful comments on earlier versions 
of this Essay.  This Essay was prepared for the Symposium entitled Rise of the Machines:  
Artificial Intelligence, Robotics, and the Reprogramming of Law, hosted by the Fordham Law 
Review and the Neuroscience and Law Center on February 15, 2019, at Fordham University 
School of Law.  For an overview of the Symposium, see Deborah W. Denno & Ryan 
Surujnath, Foreword:  Rise of the Machines:  Artificial Intelligence, Robotics, and the 
Reprogramming of Law, 88 FORDHAM L. REV. 381 (2019). 
 
 1. For a discussion of convergence, see Henry Jenkins, Convergence?:  I Diverge., MIT 
TECH. REV. (June 1, 2001), https://www.technologyreview.com/s/401042/convergence-i-
diverge/ [https://perma.cc/UU37-D5RQ]. 
 2. See, e.g., Christy Roland, The Convergence of Convergence:  Examples of Digital, 
Media, Video, Technology and Industry Converging in the 21st Century, AT&T SHAPE (Nov. 
20, 2018), https://shape.att.com/blog/examples-of-convergence [https://perma.cc/5HB4-
SN56]. 
 3. See, e.g., Nic Fleming, Computer-Calculated Compounds, 557 NATURE S55, S55–S57 
(2018); Denise Myshko & Robin Robinson, Artificial Intelligence:  Molecule to Market, 
PHARMAVOICE (Jan. 2019), https://www.pharmavoice.com/article/2019-01-pharma-ai/ 
[https://perma.cc/TE29-26M3]. 
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Sciences Outlook” report by the consultancy Deloitte states, “[t]he physical, 
digital, and biological worlds converge in Industry 4.0.”4 

The U.S. Food and Drug Administration (FDA) has begun to address some 
of the opportunities and challenges that AI presents for drug, biologic, and 
medical device regulation.  This is particularly true for medical devices and 
for certain kinds of virtual patient models.  In the short term, the FDA should 
pay more attention to protocols for AI-assisted drug and biologic trials and 
to privacy and cybersecurity in medical devices.  In the longer term, AI could 
dramatically lower development costs and transform the blockbuster patent-
driven model of drug development.  At the same time, AI could shift control 
of drug, biologic, and device markets from the biopharmaceutical industry to 
Silicon Valley.  Before this shift happens, U.S. and international 
policymaking bodies should consider how regulatory and intellectual 
property policy regarding AI and drugs, biologics, and devices could lead to 
a more equitable and sustainable future for global health. 

Part I of this Essay surveys the current legal and economic framework for 
drugs, biologics, and medical devices in the United States, and discusses 
some ways in which AI might disrupt that framework.  Part II examines 
currently emerging policies at the FDA for in silico trials—trials conducted 
by computer models, often involving AI technologies—and AI-enabled 
medical devices.  Part II also discusses how AI might stretch those policies 
over the next ten to twenty years and takes a speculative look at AI-enabled 
drugs and devices in the year 2050.  Part III concludes. 

I.  THE CURRENT LEGAL AND ECONOMIC FRAMEWORK FOR 
PHARMACEUTICAL PRODUCTS AND MEDICAL DEVICES IN THE UNITED 

STATES 

Pharmaceutical drugs, medical devices, and biologic products are essential 
to both public health and big business.5  There are different regulatory 
pathways for drugs, biologics, and devices in the United States.  The Federal 
Food, Drug, and Cosmetic Act6 (“FD & C Act”) governs the sale of 
prescription drugs through the FDA.7  Under the FD & C Act, the FDA is 
also responsible for regulating biologics and medical devices.8  The 
economics of drugs, biologics, and devices differ in important ways.  The 
economics of drug and device markets also differ significantly, in no small 
part because of these regulatory differences. 

 

 4. DELOITTE, 2019 GLOBAL LIFE SCIENCES OUTLOOK 23 (2019), 
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Life-Sciences-Health-
Care/gx-lshc-ls-outlook-2019.pdf [https://perma.cc/CR38-EE5P]. 
 5. The Pharmaceutical Research Manufacturer’s Association claims that 
biopharmaceutical companies invest $90 billion in research and development and support 
4.7 million jobs in the United States. 2018 Profile:  Biopharmaceutical Research Industry, 
PHRMA 1, http://phrma-docs.phrma.org/industryprofile/2018/pdfs/2018_IndustryProfile_ 
Brochure.pdf [https://perma.cc/J988-958F] (last visited Oct. 6, 2019). 
 6. Ch. 675, 52 Stat. 1040 (1938) (codified as amended in scattered sections of 21 U.S.C.). 
 7. 21 U.S.C. §§ 351–60 (2012). 
 8. Id. 
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A.  Pharmaceutical Drug Regulation 

Before the FDA authorizes a new drug for sale, the manufacturer must 
demonstrate that the drug is safe and effective for its proposed uses and that 
its benefits outweigh its risks.9  The manufacturer must also show that the 
product will be accompanied by appropriate labeling, including any required 
warnings, and that the methods used in manufacturing the drug and the 
controls used to maintain the drug’s quality are adequate to preserve the 
drug’s identity, strength, quality, and purity.10  This information must be 
presented to the FDA’s Center for Drug Evaluation and Research in a “New 
Drug Application” (NDA).11 

1.  Discovery, Development, and Preclinical Research 

The drug development process begins with a “discovery and development” 
phase, which involves basic research into public health issues, disease 
processes, new technologies, and new molecular compounds.12  Promising 
drug candidates identified during the discovery and development phase move 
into a “preclinical research” phase.13  In this phase, the drug candidate is 
tested “in vitro,” in a test tube, and “in vivo,” on living organisms other than 
humans.14  The primary purpose of this phase is to obtain information about 
dosage and toxicity levels to determine whether the drug should be tested on 
humans.15 

2.  Clinical Research 

If the preclinical research phase suggests that a drug might be a good 
candidate for human trials, the next step is the clinical research phase.  Before 
beginning clinical research, the drug developer or sponsor must submit an 
“Investigational New Drug Application” to the FDA.16  This application 
must include animal study and toxicity data, manufacturing information, 
clinical protocols for proposed studies, data from any prior human research, 
and information about the investigator.17 

 

 9. Id. § 355. 
 10. Id. 
 11. See generally Center for Drug Evaluation and Research, U.S. FOOD & DRUG ADMIN., 
https://www.fda.gov/about-fda/office-medical-products-and-tobacco/center-drug-evaluation-
and-research [https://perma.cc/96UZ-CMDU] (last updated Sept. 19, 2018). 
 12. See Step 1:  Discovery and Development, U.S. FOOD & DRUG ADMIN., https:// 
www.fda.gov/patients/drug-development-process/step-1-discovery-and-development 
[https://perma.cc/8NKN-9R7T] (last updated Jan. 4, 2018). 
 13. See Step 2:  Preclinical Research, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/ 
patients/drug-development-process/step-2-preclinical-research [https://perma.cc/Y92S-
6C2R] (last updated Jan. 4, 2018). 
 14. Id. 
 15. Id. 
 16. Step 3:  Clinical Research, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/patients/ 
drug-development-process/step-3-clinical-research [https://perma.cc/3CJC-4LRQ] (last 
updated Jan. 4, 2018). 
 17. Id. 
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The clinical research phase includes three subphases of clinical trials plus 
a possible fourth postapproval phase.  A drug candidate may fail at any of 
the first three phases.  Phase 1 tests for safety and dosage, involves 20 to 100 
healthy volunteers or people with the target disease or condition, and lasts 
for several months.18  Approximately 70 percent of drug candidates pass this 
phase.19  Phase 2 tests for efficacy and side effects, involves up to several 
hundred people with the disease or condition, and lasts up to two years.20  
Only 33 percent of drug candidates pass this phase.21  Phase 3 tests for 
efficacy and adverse reactions, involves 300 to 3000 people who have the 
disease or condition, and lasts one to four years.22 

If the drug developer believes the evidence from the clinical research phase 
shows the drug is safe and effective for its intended use, the developer can 
submit an NDA to the FDA.23  The FDA review team must determine 
whether to approve the NDA within six to ten months of the filing.24  If the 
FDA review team finds issues that must be addressed before approval, it may 
require further information or additional studies.25  Approximately 80 
percent of NDAs ultimately are approved by the FDA.26  After marketing 
approval, the drug may proceed to Phase 4 clinical trials.27  Phase 4 involves 
several thousand people who have the disease or condition and postmarket 
tests for safety and efficacy.28  Altogether, it can cost up to $2.8 billion to 
bring a drug all the way through to FDA review.29 
 

 18. Id. 
 19. Id. 
 20. Id. 
 21. Id. 
 22. Id. 
 23. Step 4:  FDA Drug Review, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/ 
patients/drug-development-process/step-4-fda-drug-review [https://perma.cc/6E8W-RPKY] 
(last updated Jan. 4, 2018). 
 24. Id. 
 25. See id. 
 26. See Rebecca Trager, FDA New Drug Approvals More Than Doubled in 2017, 
CHEMISTRY WORLD (Jan. 26, 2018), https://www.chemistryworld.com/news/fda-new-drug-
approvals-more-than-doubled-in-2017/3008575.article [https://perma.cc/RWV4-EWJS]. 
 27. In some cases, the FDA requires Phase 4 trials, but in other cases Phase 4 trials are 
voluntary. See, e.g., Viraj Suvarna, Phase IV of Drug Development, 1 PERSP. CLINICAL RES. 
57, 58 (2010). 
 28. See id. at 57. 
 29. Joseph A. DiMasi et al., Innovation in the Pharmaceutical Industry:  New Estimates 
of R&D Costs, 47 J. HEALTH ECON. 20, 27 (2016).  Some other studies argue that this estimate 
is too high. See, e.g., Nancy L. Yu et al., R&D Costs for Pharmaceutical Companies Do Not 
Explain Elevated US Drug Prices, HEALTH AFF. (Mar. 7, 2017), https:// 
www.healthaffairs.org/do/10.1377/hblog20170307.059036/full/ [https://perma.cc/8DEU-
YR2L].  But see Henry Grabowski & Richard Manning, Drug Prices and Medical Innovation:  
A Response to Yu, Helms, and Bach, HEALTH AFF. (June 2, 2017), https:// 
www.healthaffairs.org/do/10.1377/hblog20170602.060369/full/ [https://perma.cc/X35K-
QK93]; Donald W. Light, Debunking the Pharmaceutical Research ‘Free Rider’ Myth:  A 
Response to Yu, Helms, and Bach, HEALTH AFF. (June 2, 2017), https:// 
www.healthaffairs.org/do/10.1377/hblog20170602.060376/full/ [https://perma.cc/D9DD-
RVZF]; Nancy L. Yu & Peter Bach, US Drug Prices and R&D, Take 2:  A Reply to Grabowski 
and Manning, and to Light, HEALTH AFF. (July 27, 2017), https://www.healthaffairs.org/ 
do/10.1377/hblog20170727.061220/full/ [https://perma.cc/ZDH7-XWMP]. 
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The FDA has approved an average of forty-three new drugs per year since 
2015.30  The total of fifty-nine drugs approved by the FDA in 2018 was an 
all-time high.31  Approval numbers have rebounded after a decade-long lull 
between 2001 and 2010, for a variety of macroeconomic and business 
reasons.32 

B.  Biologics and Gene Therapies 

The description above relates to traditional small-molecule pharmaceutical 
drugs, which still make up about 90 percent of all drugs on the market.33  
Such drugs are relatively simple chemical entities synthesized by chemical 
reactions.34  They are usually processed into easily ingestible capsules or 
tablets and are absorbed directly into the bloodstream after ingestion.35  In 
recent years, researchers increasingly have focused on large-molecule 
biologic products and on genomics.36 

Large-molecule or “biologic” drugs are made of proteins, usually copied 
or modified from existing human proteins.37  They are typically synthesized 
using genetically modified organisms such as bacteria or yeasts, or by 
cultivating human cell lines.38  Proteins bind to cell receptors, which means 
they can be engineered to bind selectively to diseased cells, such as cancer 
cells.39  They are taken by injection or infusion because they would be 
digested if taken orally, and the method of delivery often involves the use of 
antibodies or virus carriers.40  Biologic drugs in the United States are subject 
to the same approval process as small-molecule drugs, but their complexity 
makes them even harder to develop and test for human use, which is one 
reason why they comprise such a small percentage of overall new drug 
approvals.41 

 

 30. See Novel Drug Approvals for 2019, U.S. FOOD & DRUG ADMIN., 
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-
therapeutic-biological-products/novel-drug-approvals-2019 [https://perma.cc/WU83-DQVS] 
(last updated July 22, 2019). 
 31. See John LaMattina, Can the Record Breaking Number of FDA New Drug Approvals 
Continue?, FORBES (Jan. 9, 2019, 7:59 AM), https://www.forbes.com/sites/johnlamattina/ 
2019/01/09/can-the-record-breaking-number-of-fda-new-drug-approvals-continue/ [https:// 
perma.cc/SP48-JATY]. 
 32. Id. 
 33. See Small and Large Molecules, BAYER PHARMACEUTICALS, http://pharma. 
bayer.com/en/innovation-partnering/technologies-and-trends/small-and-large-molecules/ 
[https://perma.cc/T6R7-3Q7B] (last visited Oct. 6, 2019). 
 34. Id. 
 35. Id. 
 36. See id. 
 37. Id. 
 38. Id. 
 39. Id. 
 40. Id. 
 41. See How Do Drugs and Biologics Differ?, BIOTECHNOLOGY INNOVATION ORG., 
https://www.bio.org/articles/how-do-drugs-and-biologics-differ [https://perma.cc/L7XF-
V8TN] (last visited Oct. 6, 2019); What Are “Biologics” Questions and Answers, U.S. FOOD 
& DRUG ADMIN., https://www.fda.gov/about-fda/about-center-biologics-evaluation-and-
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Like small-molecule drugs, applied research in biologics is mostly 
conducted by private pharmaceutical and biotechnology firms that hope to 
achieve large returns secured by patents, but universities are also engaged in 
significant applied research.42  The patent landscape for biologics is in flux 
and is perhaps more uncertain than for small-molecule drugs, although this 
uncertainty may suggest substantial opportunity for investment.43 

Genetic therapies could involve repairing a mutated gene, “knocking out” 
a damaged gene, or “introducing a new gene into the body.”44  New gene-
editing technologies such as Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) are making gene editing cheaper, faster, and 
more precise.45  Such technologies also are raising the possibility of germ-
line genetic editing, that is, genetic editing of egg and sperm cells, to 
eliminate diseases in the future human population or select for certain traits 
or “improvements.”46 

Biologic drugs entail similar regulatory hurdles to small-molecule drugs:  
their effects must be modeled in the lab, in animals, and in humans before 
FDA approval.47  However, there are important differences in the approval 
pathway for “biosimilar” products, those that might qualify for an 
abbreviated approval process because they are similar to an existing 
approved product.48 

Genetic therapies are a subset of biologics.  Such therapies could involve 
repairing a mutated gene, knocking out a damaged gene, or introducing a new 

 

research-cber/what-are-biologics-questions-and-answers [https://perma.cc/WBR7-E9KL] 
(last updated Feb. 6, 2018). 
 42. See generally Kevan M. A. Gartland & Jill S. Gartland, Opportunities in 
Biotechnology, 282 J. BIOTECHNOLOGY 38 (2018). 
 43. See CHRISTOPHER MCKENNA & STEVE ARLINGTON, CLARIVATE ANALYTICS, THE LIFE 
SCIENCES INNOVATION REPORT:  A DATA-DRIVEN VIEW OF EMERGING R&D TRENDS 8–11 
(2018), https://clarivate.com/wp-content/uploads/dlm_uploads/2018e/10/Life-Sciences-
Innovation-2018.pdf [https://perma.cc/D9M2-4CLA]; Nicholas Jones & Alexander Bruce 
Dean, Editorial, Current Patenting Trends for Biologics Versus Small Molecules, 1 
PHARMACEUTICAL PATENT ANALYST 225, 227 (2012); Adam Houldsworth, University 
Domination of the Biologics Patent Landscape Points Way to Heightened Deal-Making in the 
Coming Years, IAM (Jan. 17, 2019), https://www.iam-media.com/market-developments/ 
university-domination-biologics-patent-landscape-points-way-heightened-deal 
[https://perma.cc/KVT6-AWYD]. 
 44. What Is Gene Therapy?, GENETICS HOME REFERENCE (Sept. 10, 2019), 
https://ghr.nlm.nih.gov/primer/therapy/genetherapy [https://perma.cc/5NXX-CEXS]. 
 45. See What Are Genome Editing and CRISPR-Cas9?, GENETICS HOME REFERENCE 
(Aug. 6, 2019), https://ghr.nlm.nih.gov/primer/genomicresearch/genomeediting [https:// 
perma.cc/EG8V-8VWH]. 
 46. See What Are the Ethical Issues Surrounding Gene Therapy?, GENETICS HOME 
REFERENCE (Aug. 6, 2019), https://ghr.nlm.nih.gov/primer/therapy/ethics [https://perma.cc/ 
7U8E-VEAS]. 
 47. See Frequently Asked Questions About Therapeutic Biologic Products, U.S. FOOD & 
DRUG ADMIN., https://www.fda.gov/drugs/therapeutic-biologics-applications-bla/frequently-
asked-questions-about-therapeutic-biological-products [https://perma.cc/X9JE-AJJ3] (last 
updated July 7, 2015). 
 48. See Jordan Paradise, Reassessing Safety for Nanotechnology Combination Products:  
What Do Biosimilars Add to Regulatory Challenges for the FDA?, 56 ST. LOUIS U. L.J. 465, 
490–94 (2012). 
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gene into the body.49  Some somatic cell gene therapies have been approved 
by the FDA.50  The United States presently does not permit federal spending 
on human germ-line editing research. 

Constructing trials for biologics and genetic therapies is even more 
complex than for small-molecule drugs.  Because of their chemical 
complexity and the complexity of the enzymatic systems in which they 
function, the effects of introducing large-molecule biologics into the body 
are far less controllable and predictable than for small-molecule drugs.51  
Genetic therapies can be even less predictable, particularly if they affect the 
germ line.52  Changes to the germ line could cause a cascade of genetic 
changes generations into the distant future.53 

C.  Medical Device Regulation 

The FDA’s Center for Devices and Radiologic Health regulates medical 
devices and radiation-emitting products.54  Medical devices are classified 
according to three classes corresponding to their level of risk.55  The degree 
of regulation increases in each class.56 

Class I devices are those that are considered reasonably safe and effective 
with only “general” controls or that are “not life-supporting or life-sustaining 
or for a use which is of substantial importance in preventing impairment of 
human health, and which does not present a potential unreasonable risk of 
illness of injury.”57  “General controls” include basic regulatory requirements 
relating to adulteration, misbranding, registration, banned devices, 
notification and other remedies, records and reports, and other general 
provisions of the FD & C Act.58 

Class II devices are those that require “special controls,” such as “the 
promulgation of performance standards, postmarket surveillance, patient 
registries, development and dissemination of guidance documents . . . , 
recommendations, and other appropriate actions as the Commissioner deems 

 

 49. What Is Gene Therapy?, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/vaccines-
blood-biologics/cellular-gene-therapy-products/what-gene-therapy [https://perma.cc/H8UG-
VQLW] (last updated July 25, 2018). 
 50. See generally Ali Golchin & Tahereh Zarnoosheh Farahany, Biological Products:  
Cellular Therapy and FDA Approved Products, 15 STEM CELL REVIEWS & REP. 166 (2019); 
Approved Cellular and Gene Therapy Products, U.S. FOOD & DRUG ADMIN., https:// 
www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-
and-gene-therapy-products [https://perma.cc/8A4D-HL37] (last updated Mar. 29, 2019). 
 51. See How Do Drugs and Biologics Differ?, supra note 41. 
 52. See What Are the Ethical Issues Surrounding Gene Therapy?, supra note 46. 
 53. Id. 
 54. See Overview of Device Regulation, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/ 
medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-
regulation [https://perma.cc/PH9S-A6WD] (last updated Aug. 31, 2018). 
 55. Id. 
 56. Id. 
 57. 21 C.F.R. § 860.3(c)(1) (2019). 
 58. Id. 
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necessary” to provide reasonable assurance that the device is safe and 
effective.59 

A device falls in Class III if it is “life-supporting or life-sustaining, or for 
a use which is of substantial importance in preventing impairment of human 
health, or if the device presents a potential unreasonable risk of illness or 
injury” or is not substantially equivalent to a Class II device for which special 
controls are sufficient.60  Class III devices require “premarket approval” 
(PMA) or “premarket notification” (PMN).61  PMAs for Class III devices 
traditionally require clinical trials, but the 21st Century Cures Act62 (the 
“Cures Act”) permits the use of observational studies or clinical experience 
in some cases in lieu of clinical trials.63 

A PMN, also called a 510(k) application, may be available if the applicant 
can demonstrate the device is substantially equivalent to an approved 
predicate Class I or Class II device and can be marketed with special 
controls.64  Under section 510(k) of the FD & C Act and related regulations, 
device manufacturers must notify the FDA of their intent to market a medical 
device at least ninety days before marketing.65  During this period, the FDA 
will determine whether the device is new or is substantially equivalent to an 
existing device.66 

In 2017, the FDA published guidance for “De Novo Classification 
Requests” to classify new kinds of devices in Class I or II that would 
otherwise automatically fall into Class III.67  The De Novo process is 
available for devices determined to be “not substantially equivalent” to 
existing devices because of “(1) the lack of an identifiable predicate device, 
(2) a new intended use, or (3) different technological characteristics that raise 
different questions of safety and effectiveness.”68  The applicant must 
demonstrate that the device appears, “based on what is known about the 
device, to meet the statutory standards for classification into class I or class 
 

 59. Id. § 860.3(c)(2). 
 60. Id. § 860.3(c)(3). 
 61. Id. 
 62. See Pub. L. No. 114-255, 130 Stat. 1033 (2016) (codified as amended in scattered 
sections of the U.S.C.). 
 63. See id. § 1002, 130 Stat. at 1042; Gail A. Van Norman, Drugs, Devices and the FDA:  
Part 2, 1 JACC:  BASIC TO TRANSLATIONAL SCI. 277, 279 (2016). 
 64. Premarket Notification 510(k), U.S. FOOD & DRUG ADMIN., https://www.fda.gov/ 
medical-devices/premarket-submissions/premarket-notification-510k [https://perma.cc/ 
A8NS-RHUZ] (last updated Sept. 27, 2018).  A very limited number of Class III devices also 
potentially can be approved under an abbreviated humanitarian device exemption. See 
Humanitarian Device Exemption, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/medical-
devices/premarket-submissions/humanitarian-device-exemption [https://perma.cc/T2NS-
33SN] (last updated Mar. 27, 2018). 
 65. 21 C.F.R. § 807.81 (2019). 
 66. Id.; 510(k) Clearances, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/medical-
devices/device-approvals-denials-and-clearances/510k-clearances [https://perma.cc/332F-
J53V] (last updated Sept. 4, 2018). 
 67. See generally FDA, DE NOVO CLASSIFICATION PROCESS (EVALUATION OF AUTOMATIC 
CLASS III DESIGNATION):  GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION 
STAFF (2017), https://www.fda.gov/media/72674/download [https://perma.cc/R6CQ-UVTN]. 
 68. Id. at 4–6. 
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II.”69  The applicant must also “sufficiently understand and be able to 
explain . . . the probable risks to health and probable benefits of the device, 
explain the measures needed to effectively mitigate all probable risks, and 
explain how device safety and effectiveness can be assured through the 
application of general controls or general and special controls.”70 

A device may be reclassified from Class III to Class II, either by sponsor 
petition or FDA initiative, if available scientific evidence shows that general 
and special controls provide a reasonable assurance of the device’s safety and 
efficacy.71  This can be important for a number of reasons, including that the 
reclassified device can serve as a basis for a PMN.  A manufacturer might 
obtain approval for a novel Class III device, have the device reclassified, and 
then obtain PMNs for incremental modifications, which establish a market 
position, usually supported by patents, around a core concept.72 

D.  Economic Effects of the Current Model 

Because of the expense, complexity, and time horizon of the clinical 
research phase, many approved drugs are either sponsored by large 
multinational pharmaceutical companies or acquired by such companies after 
initial development by smaller companies.  The top twenty companies for 
total new drug and new therapeutic biologic product approvals from 2015 to 
2018, for example, were as follows: 
  

 

 69. Id. at 6. 
 70. Id. 
 71. See Reclassification, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/about-
fda/cdrh-transparency/reclassification [https://perma.cc/VW4J-6HTK] (last updated Feb. 14, 
2019). 
 72. See Van Norman, supra note 63, at 278. 
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Table 173 

Company 
Number of 
Approvals

Publicly Traded
Market 

Capitalization 
in 2019 ($bn) 

Pfizer Inc. 9 NYSE 194.743 

Eli Lilly & Co. 7 NYSE 103.985 

AstraZeneca PLC 5 NYSE 112.238 

Alexion Pharmaceuticals, Inc. 4 Nasdaq 21.481 

Amgen Inc. 4 Nasdaq 116.58 

Array BioPharma 4 No74 — 

Genentech 4 No — 

Gilead Sciences, Inc. 4 Nasdaq 79.445 

Janssen Pharmaceuticals 4 No — 

AAA USA Inc. 3 No — 

AbbVie Inc. 3 NYSE 107.336 

Allergan PLC 3 NYSE 54.514 

Astellas Pharma Inc. 3 
Tokyo Stock 

Exchange 
26.942 

GlaxoSmithKline PLC 3 NYSE 104.912 

Novartis AG 3 NYSE 196.594 

Shire Dev LLC 3 No75 — 

Sun Pharmaceutical Industries 
Ltd. 

3 
National Stock 

Exchange (India)
907.748 

Teva Pharmaceutical 
Industries Ltd. 

3 NYSE 7.491 

Vertex Pharmaceuticals Inc. 3 Nasdaq 43.24 

 

 73. This chart was compiled using information from the FDA’s website and Yahoo! 
Finance. See New Drugs at FDA:  CDER’s New Molecular Entities and New Therapeutic 
Biological Products, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/Drugs/ 
DevelopmentApprovalProcess/DrugInnovation/default.htm [https://perma.cc/2MNZ-423Q] 
(last updated Feb. 2, 2018); YAHOO! FIN., https://finance.yahoo.com [https://perma.cc/V653-
QPP4] (last visited Oct. 6, 2019).  The financial information is current as of October 6, 2019. 
 74. Array BioPharma was acquired by Pfizer in 2019. Jared S. Hopkins & Kimberly Chin, 
Pfizer to Buy Cancer Drug Maker Array BioPharma for $10.64 Billion, WALL ST. J. (June 17, 
2019, 3:43 PM), https://www.wsj.com/articles/pfizer-to-acquire-array-biopharma-for-11-4-
billion-enterprise-value-11560769500 [https://perma.cc/3JTJ-8QFA]. 
 75. Shire Dev LLC was acquired by Takeda in 2019. Preetika Rana, Takeda Wins 
Shareholder Approval for Its Shire Megadeal, WALL ST. J. (Dec. 5, 2018, 11:54 AM), https:// 
www.wsj.com/articles/takeda-wins-shareholder-approval-for-its-62-billion-shire-bid-
1543982265?mod=mktw [https://perma.cc/8M2G-DGGG]. 
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The role of major pharmaceutical companies in the clinical research phase 

leading up to FDA approval means that most applied drug research in the 
United States is funded by private capital and directed by the market.  This 
is in stark contrast to basic research, which is funded largely by governmental 
spending of tax dollars and directed by public officials through the National 
Institutes of Health (NIH).76 

The role of private capital in applied drug research determines the 
fundamental importance of patents in the drug development process.77  Drug 
companies apply for patents on the chemical composition of promising new 
compounds early in the development cycle.  Patents can also be obtained on 
new uses and combinations of existing compounds.  A patent confers an 
exclusive right to make, use, sell, or offer for sale the patented invention, 
which expires twenty years after the date the patent application is filed, with 
some possible extensions for some drug products.78 

Because of the long regulatory approval lead time, by the time an approved 
new drug reaches the market, only four to six years of patent life usually 
remain.79  Drug companies and their investors and lenders therefore rely on 
a model in which a relatively small number of research targets eventually 
produce a large market return over a short time window.  This dynamic 
means that consumers must pay prices for new drugs that are many multiples 
over a competitive market price.80  Traditional small-molecule 
pharmaceuticals are relatively cheap and easy to manufacture, even with 
regulatory requirements for good manufacturing practices.81  The market 
price of a new small-molecule drug might reflect a multiplier of hundreds or 
even thousands over the marginal cost of production per dose.82  At least this 
was the industry’s business model until the new drug pipeline began to dry 
up.83 

The need to obtain such a high price premium means that drug 
development is geared toward segments of the market with low price 

 

 76. See Grants & Funding, NAT’L INSTITUTES HEALTH, https://www.nih.gov/grants-
funding [https://perma.cc/8U9K-JNHV] (last visited Oct. 6, 2019). 
 77. See David W. Opderbeck, Patents, Essential Medicines, and the Innovation Game, 58 
VAND. L. REV. 501, 518–19 (2005). 
 78. 35 U.S.C. § 154 (2012). 
 79. See Dennis S. Fernandez et al., The Interface of Patents with the Regulatory Drug 
Approval Process and How Resulting Interplay Can Affect Market Entry, ipHANDBOOK BEST 
PRACTICES 968–70, http://www.iphandbook.org/handbook/chPDFs/ch10/ipHandbook-
Ch%2010%2009%20Fernandez-Huie-Hsu%20Patent%20and%20FDA%20Interface% 
20rev.pdf [https://perma.cc/DV45-FPZ6] (last visited Oct. 6, 2019). 
 80. See generally Patricia Danzon, Value-Based Differential Pricing:  Efficient Prices for 
Drugs in a Global Context, 24 HEALTH ECON. 294 (2015). 
 81. See, e.g., Opderbeck, supra note 77, at 522–27. 
 82. See id. 
 83. See Editorial, Lessons from Lipitor and the Broken Blockbuster Drug Model, 378 
LANCET 1976, 1976 (2011).  But see Richard Harrison, 2018 Could Be a Record Year for 
Blockbuster Drugs, PHARMATIMES ONLINE (Apr. 9, 2018), http://www.pharmatimes.com/ 
web_exclusives/2018_could_be_a_record_year_for_blockbuster_drugs_1230918 
[https://perma.cc/CGG8-LQ8W]. 
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elasticity of demand.84  Low price elasticity of demand means that demand 
responds relatively slowly to changes in price.85  Demand for health care is 
relatively inelastic in developed economies where consumers are more 
affluent or have access to health insurance that covers prescription drugs.  
The patent-distorted market, therefore, not surprisingly, directs drug 
discovery away from remedies for conditions that primarily affect the poor 
or excludes the poor from access to treatments for conditions that afflict the 
rich and poor alike.86 

This dynamic raises both distributional and other economic concerns.  
From the perspective of distributive justice, it seems unfair that rich people 
receive a much higher share of society’s resources for new drug treatments 
than low income individuals.  From an economic perspective, the high cost 
of drugs and other health care contributes to increased concentrations of 
wealth by ensuring that those who are already wealthy are also healthier and 
therefore better able to produce more wealth for themselves, while those who 
are low income experience health problems as economically catastrophic. 

The primary way the United States deals with the high cost of drugs and 
other health care is through private and public health insurance.87  A middle- 
or upper-class American with a job likely can obtain health insurance from a 
private insurer via an employer-sponsored plan or through a private plan.  
These payers exert downward pressure on health-care costs by negotiating 
rates with providers and by managing the care provided, for example, through 
procedure approvals and drug formularies.88  Medicaid and Medicare provide 
public, government-funded health insurance for the poor and elderly, 
respectively, and also attempt to contain costs through managed care and 
approved drug formularies. Obamacare was meant to provide access to 
affordable health insurance for people outside of Medicaid or Medicare who 
otherwise might be uninsured, although the U.S. Supreme Court and 
Congress have since limited key elements of the Obamacare scheme.89 

The extent to which private payers, Medicaid, or Medicare can contain 
provider costs is often limited, particularly in relation to patented prescription 
medications that are medically indicated for a patient’s treatment.  Moreover, 
although private health insurance is available to many working Americans 
well beyond the superrich, in global terms a middle-class American with a 
job that provides an employer-sponsored health plan is comparatively 

 

 84. See Opderbeck, supra note 77, at 525–30. 
 85. Id. 
 86. See id. 
 87. See Simon F. Haeder, Why the U.S. Has Higher Drug Prices Than Other Countries, 
CONVERSATION (Feb. 7, 2019, 6:31 AM), http://theconversation.com/why-the-us-has-higher-
drug-prices-than-other-countries-111256 [https://perma.cc/7TMR-C3RX]; Ben Hirschler, 
How the U.S. Pays 3 Times More for Drugs, SCI. AM. (Oct. 13, 2015), 
https://www.scientificamerican.com/article/how-the-u-s-pays-3-times-more-for-drugs/ 
[https://perma.cc/W3PV-G3MA];  
 88. See generally Danzon, supra note 80. 
 89. See Haeder, supra note 87. 
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wealthy.90  It remains true, then, that private capital, secured by patents 
owned by private pharmaceutical companies, channels much of the global 
capacity in applied drug research towards conditions that affect wealthy 
Americans and thereby further entrenches national and global income 
disparities.91 

Many of the same market dynamics apply to biologics, but the picture is 
less clear because of the complexity of these products, the differences in the 
regulatory pathway particularly for biosimilars, and corresponding 
differences in patent protection.  Some scholars argue that, even aside from 
patents, biologics are a form of natural monopoly because of high 
infrastructure costs, scientific uncertainty, and other barriers to entry.92  
Others dispute the idea that biologics are natural monopolies but agree that 
the current biosimilar pathway is not working.93  In any event, although these 
scholars disagree on some of the causes, they agree that, like drugs, biologic 
prices are too high. 

Finally, since medical devices encompass everything from wooden tongue 
depressors to artificial hearts, it is much more difficult to generalize about 
the interplay between regulatory law, intellectual property law, and market 
forces than it is for prescription drugs.  One thing all analysts agree upon is 
that the “medtech” industry is growing.  A recent Deloitte report, for 
example, states that “[M]edtech is projected to grow at a 5.6 percent 
[compound annual growth rate] over the forecast period 2017–2024” to $595 
billion in global sales.94  As this rapidly growing industry converges with 
drugs and biologics through AI-assisted devices, economic concerns about 
cost and access will persist. 

E.  How AI Will Disrupt the Current Model 

1.  Scientific and Regulatory Disruption 

As the brief description above suggests, the pharmaceutical, biologic, and 
medical device industries are ripe for disruption by AI.  For drugs and 

 

 90. The costs of Medicare and Medicaid, of course, are borne by the American tax base, 
that is, by relatively well-off middle- and upper-class Americans whose private insurance pays 
for their own health care—or the costs are added to a massive public debt that will bankrupt 
these programs if not fixed in coming decades. See H.R. DOC. NO. 116-29, at 18 (2019); H.R. 
DOC. NO. 116-28, at 9–11 (2019). 
 91. See generally Opderbeck, supra note 77. 
 92. See Preston Atteberry et al., Biologics Are Natural Monopolies (Part 1):  Why 
Biosimilars Do Not Create Effective Competition, HEALTH AFF. BLOG (Apr. 15, 2019), 
https://www.healthaffairs.org/do/10.1377/hblog20190405.396631/full/ [https://perma.cc/ 
9VLZ-G3J2]; Mark Trusheim et al., Biologics Are Natural Monopolies (Part 2):  A Proposal 
for Post-Exclusivity Price Regulation of Biologics, HEALTH AFF. BLOG (Apr. 15, 2019), 
https://www.healthaffairs.org/do/10.1377/hblog20190405.839549/full/ 
[https://perma.cc/5G2T-WS8K]. 
 93. See Alex Brill & Benedic Ippolito, Biologics Are Not Natural Monopolies, HEALTH 
AFF. BLOG (July 2, 2019), https://www.healthaffairs.org/do/10.1377/hblog20190701.34 
9559/full/ [https://perma.cc/3ZKJ-EPBC]. 
 94. DELOITTE, supra note 4, at 10. 
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biologics, at the basic research stage, the science involves, at least, all of the 
possible large and small molecules that might interact with the human body, 
all of the naturally occurring human genetic variations that may produce 
health effects, and all of the possible engineered genetic alterations that may 
produce health effects.  That is, the starting dataset is as big as all of human 
evolutionary history, biochemistry, and genetics.  Of course, there is already 
a wealth of prior art on the findings of about two hundred years of modern 
basic and applied biochemical science and about fifty years of modern 
genomics research, but all this cumulative human effort over the past two 
centuries has only begun to unlock nature’s secrets.  AI could accelerate the 
pace of basic biochemical and genetic research exponentially, for example, 
by in silico modeling of chemical reactions or genetic changes using very 
large datasets. 

At the applied research stage, for traditional and biologic drugs, the current 
paradigm involves costly, lengthy, and relatively imprecise modeling in test 
tubes and on animals, followed by even more costly and less precise 
modeling in human subjects, which also entails ethical questions about 
human trials.95  AI could also exponentially reduce the time and cost, 
increase the precision, and mitigate ethical concerns about human trials at 
this stage through in silico modeling. 

Indeed, techniques such as high-throughput screening are already being 
used for basic and applied drug research.  The FDA is taking a proactive but 
cautious approach towards the use of in silico trials at least as part of the in 
vitro component of the standard drug approval framework.  The AI 
technology is not yet as robust in this area as the hype about its potential 
suggests, but there are good reasons to think the hype is not merely hype.96  
Perhaps in the foreseeable future AI will not relegate every old-school bench 
scientist to the historical footnotes or replace the need for all animal or human 
trials; but as the wealth of literature on the subjects suggests, there is no doubt 

 

 95. These include the circumstances under which it is acceptable to administer placebos 
to control groups of human subjects or to conduct research with persons who lack the mental 
capacity to provide informed consent.  Existing guidelines hold that properly constructed and 
administered double-blind human trials can be ethically appropriate in light of the need to test 
drugs for efficacy and safety. See, e.g., Cecilia Nardini, The Ethics of Clinical Trials, 
ECANCERMEDICALSCIENCE, Jan. 16, 2014, at 1, 5; Patient Recruitment:  Ethics in Clinical 
Research, NAT’L INSTITUTES HEALTH, https://clinicalcenter.nih.gov/recruit/ethics.html 
[https://perma.cc/8WEH-ATBJ] (last updated June 28, 2019). 
 96. For a small sampling of the outpouring of writing on this issue, see generally, 
Hongming Chen et al., The Rise of Deep Learning in Drug Discovery, 23 DRUG DISCOVERY 
TODAY 1241 (2018); Wlodzislow Duch et al., Artificial Intelligence Approaches for Rational 
Drug Design and Discovery, 13 CURRENT PHARMACEUTICAL DESIGN 1497 (2007); Sean 
Elkins, The Next Era:  Deep Learning in Pharmaceutical Research, 33 PHARMACEUTICAL RES. 
2594 (2016); Erik Gawehn et al., Deep Learning in Drug Discovery, 35 MOLECULAR 
INFORMATICS 3 (2016); Edward J. Griffen et al., Can We Accelerate Medicinal Chemistry by 
Augmenting the Chemist with Big Data and Artificial Intelligence?, 23 DRUG DISCOVERY 
TODAY 1373 (2018); David Hecht, Applications of Machine Learning and Computational 
Intelligence to Drug Discovery and Development, 72 DRUG DEV. RES. 53 (2011); and Matthew 
A. Sellwood et al., Artificial Intelligence in Drug Discovery, 10 FUTURE MEDICINAL 
CHEMISTRY 2025 (2018). 
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that current methods of drug discovery and drug testing are ripe for AI 
disruption. 

Relating to genetic therapies, there are already research projects underway 
to interpret the entire human genetic sequence and to create large databases 
of single nucleotide polymorphisms (SNPs) across human populations, with 
the hope of identifying specific effects or conditions that correlate with 
certain nucleotide variants.97  Among the significant challenges for this 
research include the number of nucleotides in the human genome 
(approximately 3.2 billion), the number of SNPs in each human individual’s 
genome (approximately 5 million), the number of human population-level 
SNPs so far identified (approximately 100 million), and epigenetic, 
environmental, and other factors that might contribute to conditions 
correlated with genetic variations.98  This is a classic case for big data 
analytics.  For example, a Google-sponsored team has employed a neural 
network tool it calls “DeepVariant” to read an individual’s genetic data.99  
Some researchers predict that, in the not-distant future, AI-driven 
pharmacogenetics “will be widely used to predict personalized drug response 
and optimize medication selection and dosing, using knowledge extracted 
from large and complex molecular, epidemiological, clinical, and 
demographic datasets.”100 

Concerning medical devices, software and connectivity has already 
created the “Internet of Medical Things” (IoMT), a segment of the medical 
device market valued at over $40 billion and expected to rise to over $155 
billion by 2022.101  These include wearable and implantable devices with 
sensors that provide information to users and their doctors.102 

In addition to the IoMT, analysts describe “Software-as-a-Medical-
Device” (SaMD) as yet another industry segment.103  This can include 
software embedded in medical device hardware or stand-alone software that 
performs medical functions such as diagnosis.104  For example, researchers 
at DeepMind, a health-care AI initiative acquired by Google in 2014, recently 

 

 97. See Databases & Tools, HUM. GENOME VARIATION SOC’Y, 
https://www.hgvs.org/content/databases-tools [https://perma.cc/UW2J-ULP7] (last updated 
July 30, 2019); dbSNP, NCBI, https://www.ncbi.nlm.nih.gov/snp/ [https://perma.cc/5SMU-
YGV3] (last updated Apr. 8, 2019); What Are Single Nucleotide Polymorphisms (SNPs)?, 
GENETICS HOME REFERENCE (Aug. 6, 2019), https://ghr.nlm.nih.gov/primer/ 
genomicresearch/snp [https://perma.cc/VHU2-JU9X]; What Is the Encyclopedia of DNA 
Elements (ENCODE) Project?, GENETICS HOME REFERENCE (Aug. 6, 2019), 
https://ghr.nlm.nih.gov/primer/genomicresearch/encode [https://perma.cc/6SPB-TA6D]. 
 98. See TERRENCE A. BROWN, GENOMES § 1.2 (2d ed. 2002); What Are Single Nucleotide 
Polymorphisms (SNPs)?, supra note 97. 
 99. See generally Alexandr A. Kalinin et al., Deep Learning in Pharmacogenomics:  
From Gene Regulation to Patient Stratification, 19 PHARMACOGENOMICS 629 (2018); Ryan 
Poplin et al., A Universal SNP and Small-Indel Variant Caller Using Deep Neural Networks, 
36 NATURE BIOTECHNOLOGY 983 (2018). 
 100. See generally Kalinin et al., supra note 99; Poplin et al., supra note 99. 
 101. DELOITTE, supra note 4, at 25. 
 102. See id. 
 103. See id. at 26. 
 104. See id. 
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reported that deep learning–based analysis of optical coherence tomography 
(OCT) scans to detect retinal disease met or exceeded the performance of 
human experts on the same dataset.105 

Significant hurdles remain before AI can replace humans in clinical 
diagnostic settings.  As the DeepMind team noted in its OCT paper, these 
include the following:  (1) “AI (typically trained on hundreds of thousands 
of examples from one canonical dataset) must generalise to new populations 
and devices without a substantial loss of performance, and without 
prohibitive data requirements for retraining”; (2) “AI tools must be 
applicable to real-world scans, problems and pathways, and designed for 
clinical evaluation and deployment”; and (3) “AI tools must match or exceed 
the performance of human experts in such real-world situations.”106  All of 
these, however, are problems the technology should begin to overcome in the 
relatively near future. 

2.  Economic Disruption 

As the discussion above suggests, there is a great deal of hype and buzz—
much of it justified—over the potential for AI to revolutionize health-care 
technology.  AI could also disrupt the current economic model for drug and 
device discovery and development.  Most obviously, AI could reduce the 
enormous sunk costs of finding and testing new drugs, which could upset the 
blockbuster patent cycle.  This could make drugs more affordable, while also 
challenging pharmaceutical industry’s dominant business model—or, it 
could heighten calls for regulation of the industry that continues to sell drugs 
at high, patent-supported prices even as development costs fall. 

AI could also help identify personalized drug treatments, design custom-
tailored implants, or even create highly customizable genetic therapies 
applicable only to a small population, perhaps even to specific individuals 
who could afford them.107  This could spur niche industries in personalized 
pharmaceuticals, devices, and genetic treatments, creating jobs and economic 
opportunities for workers and investors in those businesses.  It could also 
increase economic inequality, perhaps dramatically. 

Today, wealthy people who can afford quality health care are more 
economically productive because they are healthier.  Those economic 

 

 105. Jeffrey De Fauw et al., Clinically Applicable Deep Learning for Diagnosis and 
Referral in Retinal Disease, 24 NATURE MED. 1342, 1343 (2018).  On DeepMind generally, 
see DEEPMIND, https://deepmind.com/ [https://perma.cc/LVX9-VG5D] (last visited Oct. 6, 
2019). 
 106. See De Fauw et al., supra note 105, at 1342. 
 107. It is already the case that computer-assisted design (CAD) software and 3-D printers 
are used to create orthodontic aligners, dental implants, and orthopedic implants. See, e.g., 
Rick Ferguson, 2018—The Year of 3-D Printing in the Dental Office?, DENTAL ECON. (Apr. 
1, 2018), https://www.dentaleconomics.com/science-tech/article/16385056/2018the-year-of-
3d-printing-in-the-dental-office [https://perma.cc/TV9D-NNDG]; P. D. Olson, 100,000 
Patients Later, the 3D-Printed Hip Is a Decade Old and Going Strong, GE REP. (Mar. 5, 
2018), https://www.ge.com/reports/100000-patients-later-3d-printed-hip-decade-old-going-
strong/ [https://perma.cc/CS6D-P5XX]. 
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benefits are passed on to their children, who also can thereby enjoy higher 
levels of health and wealth, while low-income people who cannot afford 
quality health care become trapped in cycles of declining health and 
wealth.108  With personalized health care, including drug and genetic 
treatments (and enhancements), the wealthy could become so physically 
robust that low-income people cannot possibly compete.  It could even 
happen that in the distant future the wealthy might evolve into a different 
“transhuman” species while the poor remain ordinary humans.109  A trope in 
science fiction involves an elite genetically and/or cybernetically enhanced 
master class that dominates the unenhanced masses who cannot afford 
enhancements.110  This is still science fiction, but it is fiction rooted in the 
real capabilities of technologies being developed today. 

With less human involvement in the drug and device process, treatments 
may be found that are unpatentable under existing patent law because there 
is no human “inventor.”  And since a deep learning AI is only as good as its 
training data, access to patient information and demographic data will serve 
a role similar to oil today—a basic resources that fuels other industries.111  
The most valuable intellectual property in the pharmaceutical sector may 
shift from patents on particular compounds or treatments to copyrights and 
trade secrets in the AI’s code and algorithms and to the datasets the AI 
consumes.  Silicon Valley, the economic Borg, may one day assimilate the 
multinational pharmaceutical industry.112 

At the same time, at a global level, AI could provide a more accurate 
understanding of the treatments that could do the most good for more of the 
world’s population, based on massive epidemiological and genetic datasets.  
Specifically, AI could paint an even clearer picture of how a blockbuster 
patent model of applied drug discovery funded by equity markets benefits the 
minority of people in the rich global North at the expense of the majority of 

 

 108. See, e.g., Dhruv Khullar & Dave A. Chokshi, Health, Income, & Poverty:  Where We 
Are & What Could Help 1–2, HEALTH AFF. (Oct. 4, 2018), https://www.healthaffairs.org/ 
do/10.1377/hpb20180817.901935/full/HPB_2017_RWJF_05_W.pdf [https://perma.cc/ 
X2S9-7S8R]. 
 109. See, e.g., HUMANITY+, https://humanityplus.org/ [https://perma.cc/B9M8-5QQR] 
(last visited Oct. 6, 2019). 
 110. Pierce Brown’s Red Rising series provides a good example. See generally PIERCE 
BROWN, DARK AGE (2019); PIERCE BROWN, GOLDEN SON (2015); PIERCE BROWN, IRON GOLD 
(2018); PIERCE BROWN, MORNING STAR (2016); PIERCE BROWN, RED RISING (2014).  Kim 
Stanley Robinson’s Mars trilogy provides another perspective, at first more sanguine but also 
hortatory. See generally KIM STANLEY ROBINSON, BLUE MARS (1996); KIM STANLEY 
ROBINSON, GREEN MARS (1994); KIM STANLEY ROBINSON, RED MARS (1993). 
 111. See The World’s Most Valuable Resource Is No Longer Oil, but Data, ECONOMIST 
(May 6, 2017), https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-
resource-is-no-longer-oil-but-data [https://perma.cc/8995-2XD4]. But see Antonio García 
Martínez, No, Data Is Not the New Oil, WIRED (Feb. 26, 2019, 7:00 AM), https:// 
www.wired.com/story/no-data-is-not-the-new-oil/ [https://perma.cc/64B3-JF6V]. 
 112. For readers who are not sci-fi geeks, the “Borg” was a collective entity in the Star 
Trek:  The Next Generation television and film series that sought to assimilate all life into its 
technologically advanced but soulless hive. See Borg, STAR TREK, https://www.startrek.com/ 
database_article/borg [https://perma.cc/2KT7-2L7N] (last visited Oct. 6, 2019). 
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people in the poor global South.113  In the future—not the immediate future, 
but within a present lifetime—AI might be capable of making policy 
judgments about resource allocation for drug development and discovery that 
make any moral case for reliance on patent-fueled markets definitively 
untenable.  But the increased use of AI in this area will also raise ethical 
problems relating to accountability, equity, and privacy that have already 
become apparent in AI applications today.114  All of this suggests that we 
should begin thinking now about how AI-enabled drug discovery and 
development should be regulated, which is the subject of Part II below. 

II.  NEW REGULATORY FRAMEWORKS 

This Part begins with a discussion of the FDA’s current perspectives on in 
silico trials for drugs and medical devices.  It then turns to possible regulatory 
frameworks for plausible uses of AI in drug discovery and development in 
the near- to medium-term, that is, over the next five to twenty years.  The 
middle subsection of this Part considers possible regulatory frameworks over 
a longer horizon of twenty to thirty years.  The final subsection of this Part 
offers a somewhat more fanciful, but not implausible, peek at AI-enabled 
drug development and discovery in the year 2050 and into the next century. 

A.  FDA’s Current Perspective on In Silico Trials for Drugs 

The FDA recognizes the potential benefits of in silico trials.  In the Cures 
Act, Congress appropriated $500 million over eight years for an FDA 
“Innovation Account.”115  The Cures Act further directed the secretary of the 
Department of Health and Human Services to work on a number of specific 
priorities, including consultations about novel clinical trial designs.116  In 
announcing the FDA’s work plan under the Act, FDA Commissioner Scott 
Gottlieb highlighted plans to increase the use of in silico trials and other 
forms of data monitoring as part of the agency’s innovation plan.117  In a 
report accompanying the Senate’s 2016 FDA appropriations bill, the Senate 
Committee on Appropriations stated that: 

In Silico trials may potentially protect public health, advance personalized 
treatment, and be executed quickly and for a fraction of the cost of a full 
scale live trial.  The FDA has advocated the use of such systems as an 
additional innovative research tool.  Therefore, the Committee urges FDA 
to engage with device and drug sponsors to explore greater use, where 

 

 113. Cf. generally Opderbeck, supra note 77. 
 114. Asilomar AI Principles, FUTURE LIFE INST., https://futureoflife.org/ai-principles/ 
[https://perma.cc/LNG7-MYQT] (last visited Oct. 6, 2019). 
 115. 21st Century Cures Act, Pub. L. No. 114-255, § 1002, 130 Stat. 1033, 1042–45 (2016). 
 116. Id. § 3021, 130 Stat. at 1095–96 (codified as amended at 21 U.S.C. § 355 note (Supp. 
2017)). 
 117. Scott Gottlieb, How FDA Plans to Help Consumers Capitalize on Advances in 
Science, U.S. FOOD & DRUG ADMIN. (July 7, 2017), https://www.fda.gov/news-events/fda-
voices-perspectives-fda-experts/how-fda-plans-help-consumers-capitalize-advances-science 
[https://perma.cc/FRJ3-3BGK]. 
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appropriate, of In Silico trials for advancing new devices and drug therapy 
applications.118 

These statements reflect U.S. policy in favor of exploring the use of in 
silico trials.  However, the FDA has not yet issued any guidance, and the 
technology remains nascent.119 

B.  FDA’s Current Regulatory Framework for AI and Devices 

The FDA’s thinking about in silico trials seems more advanced in the area 
of medical devices.  This is because of several factors.  First, the FDA already 
defines certain kinds of software used in disease detection, diagnosis, or other 
medical applications as a regulated “medical device”—SaMD.120  Second, 
today’s medical devices are increasingly IoT devices, and like any software-
dependent device, they can be updated remotely.  Such updates can be 
remedial measures for bugs or security flaws, but a device also can be 
designed to respond dynamically to its environment, sending and receiving 
performance data and making algorithmically determined adjustments in real 
time.  The FDA must determine when regulatory approval is required for a 
software or software-based update that materially changes a device’s 
performance.  Finally, since many medical devices are mechanical devices 
(such as, for example, hip replacements), the design and performance of 
medical devices can be modeled in silico, just as is the case for the myriad of 
other things designed using computer-aided design (CAD) software.  
Machine learning combined with CAD software could eventually allow the 

 

 118. S. REP. NO. 114-82, at 86 (2015). 
 119. Some observers suggest that the FDA has been slow to implement some of these 
priorities because the funding is relatively small, and the agency is understaffed. See, e.g., 
Stephen Barlas, The 21st Century Cures Act:  FDA Implementation One Year Later, 43 
PHARMACY & THERAPEUTICS 149, 150 (2018).  The FDA has, however, issued guidance on 
drug development tools (DDTs), which are “methods, materials, or measures that have the 
potential to facilitate drug development,” including, for example, biomarkers, clinical 
outcome assessments, and animal models. See Drug Development Tool Qualification 
Programs, U.S. FOOD & DRUG ADMIN., https://www.fda.gov/drugs/development-approval-
process-drugs/drug-development-tool-qualification-programs [https://perma.cc/R934-THA5] 
(last updated June 28, 2019); see also Drug Development Tools: Fit-for-Purpose Initiative, 
U.S. FOOD & DRUG ADMIN., https://www.fda.gov/drugs/development-approval-process-
drugs/drug-development-tools-fit-purpose-initiative [https://perma.cc/T89S-D49L] (last 
updated June 28, 2016).  DDTs could encompass tools used in AI algorithms.  The FDA also 
has issued guidance on physiologically based pharmacokinetic and pharmacodynamic 
modeling, which are mathematical models that can be “iteratively modified and updated when 
new knowledge in drug and physiology become available.” Program of Physiologically-Based 
Pharmacokinetic and Pharmacodynamic Modeling (PBPK Program), U.S. FOOD & DRUG 
ADMIN., https://www.fda.gov/about-fda/center-drug-evaluation-and-research/program-
physiologically-based-pharmacokinetic-and-pharmacodynamic-modeling-pbpk-program 
[https://perma.cc/4VLR-7UK3] (last updated Sept. 4, 2018).  This kind of modeling also is a 
good candidate for AI applications. 
 120. See INT’L MED. DEVICE REGULATORS FORUM, SOFTWARE AS A MEDICAL DEVICE 
(SAMD):  KEY DEFINITIONS 4 (2013), http://www.imdrf.org/docs/imdrf/final/technical/imdrf-
tech-131209-samd-key-definitions-140901.pdf [https://perma.cc/26PJ-T876]. 
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computer to make fundamental design decisions.121  The FDA is considering 
the extent to which in silico modeling can used to help determine how a 
device should be classified or whether it should be approved. 

SaMD is defined as “software intended to be used for one or more medical 
purposes that perform these purposes without being part of a hardware 
medical device.”122  In 2017, the FDA issued a guidance document 
incorporating clinical evaluation criteria for SaMD developed by the 
International Medical Device Regulators Forum (IMDRF).123  The guidance 
is organized around the categories of “valid clinical association,” “analytical 
validation,” and “clinical validation,” as follows:  (1) “Is there a valid clinical 
association between your SaMD output and your SaMD’s targeted clinical 
condition?”; (2) “Does your SaMD correctly process input data to generate 
accurate, reliable, and precise output data?”; and (3) “Does use of your 
SaMD’s accurate, reliable, and precise output data achieve your intended 
purpose in your target population in the context of clinical care?”124 

The guidance document suggests that the SaMD’s performance under each 
of these categories may be subject to independent clinical evaluation 
depending on the level of risk presented by the SaMD.125 

These categories might be relatively easy to apply in relation to traditional 
software products that process data according to a fixed program against a 
well-defined data range.  For example, diagnostic software could be 
preprogrammed with known correlations between certain health conditions 
and a standard blood chemistry profile test, whereby inputting different 
ranges of numbers produces certain results—such as that a phosphorous level 
outside a normal range suggests a kidney problem.126 

The criteria might be more difficult to apply, however, in relation to 
machine learning AI.  The expected degree of accuracy, reliability, and 
precision will vary as the machine learns, just as it does when a human learns.  
Further, the expected degree of accuracy, reliability, and precision may vary 
as the problem presented becomes more complex or novel—again, just as 
may be the case for a human.  Finally, because the AI system changes as it 
learns, it creates a never-ending series of iterations of itself that would have 
 

 121. See Rachel Gordon, Reshaping Computer-Aided Design, MIT NEWS (July 24, 2017), 
http://news.mit.edu/2017/reshaping-computer-aided-design-instantcad-0724 
[https://perma.cc/7RVT-QPLF]; Anand Rajagopal et al., The Rise of Machine Learning in 
Construction, AUTODESK U., https://www.autodesk.com/autodesk-university/article/Rise-AI-
and-Machine-Learning-Construction-2018 [https://perma.cc/H2FL-EX7S] (last visited Oct. 
6, 2019). 
 122. Software as a Medical Device (SaMD), U.S. FOOD & DRUG ADMIN., 
https://www.fda.gov/medical-devices/digital-health/software-medical-device-samd [https:// 
perma.cc/28GZ-59KN] (last updated Aug. 31, 2018). 
 123. See generally FDA, SOFTWARE AS A MEDICAL DEVICE (SAMD):  CLINICAL 
EVALUATION;  GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF (2017), 
https://www.fda.gov/media/100714/download [https://perma.cc/RV85-6A5B] [hereinafter 
SOFTWARE AS A MEDICAL DEVICE]. 
 124. Id. at 7. 
 125. Id. 
 126. See Phosphorous, AACC:  LAB TESTS ONLINE, https://labtestsonline.org/tests/ 
phosphorus [https://perma.cc/8SLC-WZE6] (last updated Dec. 21, 2018). 
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to be tested and retested—yet again, just like a human whose performance 
must regularly be reevaluated.  AI’s promise exceeds that of traditional 
software precisely in its ability to make the kinds of probabilistic, intuitive 
leaps associated with human intelligence and to adapt dynamically in 
response to new information as humans do. 

The IMDRF criteria recognize these possibilities to some extent by 
providing for postmarket information gathering but specifically place 
“machine learning software” into a different category.127  Building on the 
IMDRF criteria, the FDA has promulgated guidelines for when to file a new 
510(k) PMN for a software change to an existing device and has developed 
a voluntary software precertification program that provides a streamlined 
premarket review with ongoing postmarket oversight as the product is refined 
through use.128  Under this guidance, the kinds of changes that may require 
a new 510(k) include:  (1) “[a] change that introduces a new risk or modifies 
an existing risk that could result in significant harm”; (2) “[a] change to risk 
controls to prevent significant harm; and” (3) “[a] change that significantly 
affects clinical functionality or performance specifications of the device.”129 

The FDA recognizes that these categories raise questions about AI 
applications and accordingly has issued a discussion paper and request for 
feedback on how to assess AI applications.130  In the discussion paper, the 
FDA notes that “[t]o date, FDA has cleared or approved several AI/ML-
based SaMD” that “[t]ypically . . . have only included algorithms that are 
‘locked’ prior to marketing, where algorithm changes likely require FDA 
premarket review for changes beyond the original market authorization.”131  
According to the discussion paper, “[t]he highly iterative, autonomous, and 
adaptive nature of [AI/ML] tools requires a new, total product lifecycle 
(TPLC) regulatory approach that facilitates a rapid cycle of product 
improvement and allows these devices to continually improve while 
providing effective safeguards.”132 

In the TPLC approach, the FDA’s focus first would be on whether the 
applicant’s “culture of quality and organizational excellence” provides 
“reasonable assurance of the high quality of [the applicant’s] software 
development, testing, and performance monitoring of [its] products.”133  A 

 

 127. SOFTWARE AS A MEDICAL DEVICE, supra note 123, at 20. 
 128. FDA, DECIDING WHEN TO SUBMIT A 510(K) FOR A SOFTWARE CHANGE TO AN EXISTING 
DEVICE:  GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF 1 (2017), 
https://www.fda.gov/media/99785/download [https://perma.cc/Z543-TTFX]; FDA, 
DEVELOPING A SOFTWARE PRECERTIFICATION PROGRAM:  A WORKING MODEL 18–20 (2019), 
https://www.fda.gov/media/119722/download [https://perma.cc/QY32-5Y48] [hereinafter 
DEVELOPING A SOFTWARE PRECERTIFICATION PROGRAM]. 
 129. FDA, PROPOSED REGULATORY FRAMEWORK FOR MODIFICATIONS TO ARTIFICIAL 
INTELLIGENCE/MACHINE LEARNING (AI/ML)-BASED SOFTWARE AS A MEDICAL DEVICE 
(SAMD):  DISCUSSION PAPER AND REQUEST FOR FEEDBACK 3 (2019), https://www.fda.gov/ 
media/122535/download [https://perma.cc/YPU3-2XNX]. 
 130. Id. 
 131. Id. 
 132. Id. 
 133. Id. at 7. 
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key question here would be whether the applicant uses “Good Machine 
Learning Practices (GMLP),” which include practices relating to data 
selection and management, model training and tuning, model validation, and 
model monitoring with feedback into further model training and tuning.134 

The FDA would then examine the AI/ML SaMD as it does other SaMDs, 
based on the level of risk presented.  For an AI/ML SaMD that requires 
premarket review, in addition to the SaMD clinical evaluation criteria, the 
applicant could submit a “predetermined change control plan” that would 
include “SaMD Pre-Specifications (SPS)” and an “Algorithm Change 
Protocol (ACP).”135  The SPS would define a “region of potential changes” 
for the device when it is in use, and the ACP would establish specific controls 
over data management, retraining objectives and methods, performance 
evaluation, and update procedures.136  After initial approval, if changes to 
the device are within the SPS and ACP parameters, usually the applicant 
would only need to document the changes rather than to file a 510(k).137  In 
some cases, the applicant may seek postmarket modifications to the SPS or 
ACP without filing a 510(k), while changes materially beyond the SPS or 
ACP might require a new 510(k).138  In short, the FDA anticipates a 
premarket process for defining a range of possible changes in an AI/ML 
SaMD while in use, along with preapproved protocols for how those changes 
can occur without requiring a new 510(k). 

In addition to SaMD, the FDA also recognizes the potential for 
computational modeling to transform the device approval process for 
physical devices.  It is now common practice to supplement traditional bench, 
nonclinical in vivo, and clinical trials with computational models for device 
approvals.139  Such computational models can involve, for example, risk 
assessments and performance and mechanics simulations in a “virtual” 
patient model.140  The FDA has issued guidance on how to report 
computational modeling studies as part of a medical device submission, 
including detailed guidelines relating to computational fluid dynamics and 
mass transport, solid mechanics, electromagnetics and optics, ultrasound, and 

 

 134. Id. at 8–9. 
 135. Id. at 10. 
 136. Id. at 10–11. 
 137. Id. at 13–14. 
 138. Id. 
 139. See generally, e.g., Tina M. Morrison et al., The Role of Computational Modeling and 
Simulation in the Total Product Life Cycle of Peripheral Vascular Devices, HHS PUB. ACCESS 
(Feb. 22, 2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823268/pdf/nihms 
943392.pdf [https://perma.cc/4ULL-X6XQ]. 
 140. See, e.g., Owen Faris & Jeffrey Shuren, An FDA Viewpoint on Unique Considerations 
for Medical-Device Clinical Trials, 376 NEW ENG. J. MED. 1350, 1353 (2017) (noting that 
“[d]evice manufacturers are increasingly developing stochastic engineering models that may 
have the capability to simulate clinical outcomes for ‘virtual patients’ by modeling a 
relationship between bench outcomes and clinical endpoints”).  For an example of such a 
virtual patient model, see Simulia Living Heart:  Advancing Cardiovascular Science with 
Realistic Simulation, DASSAULT SYSTÈMES, https://www.3ds.com/products-
services/simulia/solutions/life-sciences/living-heart-human-model/ [https://perma.cc/2CFH-
ZQS4] (last visited Oct. 6, 2019). 
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heat transfer.141  It also has worked with the American Society of Mechanical 
Engineers to develop a standard for assessing the credibility of such 
computational models.142 

Although computational modeling is common for medical devices, 
however, the technology and its use for regulatory purposes is only beginning 
to show its potential, particularly as augmented by AI.  As Dr. Tina Morrison, 
deputy director of the Division of Applied Mechanics in the FDA’s Office of 
Science and Engineering Laboratories, noted in a recent paper, under a 
product lifecycle management approach, the medical device industry could 
“more fully harness the power of simulation in each phase of the product’s 
lifecycle and utilize AI tools to implement knowledge gained from real-world 
data to enhance their understanding of performance, support continuous 
improvement, and inform new designs and therapies.”143  Further, Deputy 
Director Morrison said, the “FDA also believes that computational modeling 
is poised to become a critical tool for accelerating regulatory decision-
making.”144 

C.  Proposals for the Near Future (Five to Twenty Years) 

1.  Regulatory Approval Pathways 

As the discussion above shows, the FDA is ahead of the game in creating 
guidance relating to AI and medical devices, including SaMD, but seems to 
be behind concerning drugs, biologics, and genetic therapies—despite 
expressions of support for in silico trials for drugs.  This is largely because 
the IoMT is already here, while the high-throughput screening methods used 
by pharmaceutical companies today operate prior to filing for regulatory 
approvals and the technology for in silico drug trials remains nascent at best. 

It seems easy to suggest that the FDA should prepare to move as rapidly 
concerning in silico drug and biologic trials as it has for AI in devices.  The 
regulatory category of “devices,” however, is much broader than drugs or 
biologics, as the different classes of devices in the regulations suggest.  The 
public health consequences of device malfunctions can be easier to predict 
and constrain with many kinds of devices than many kinds of drugs.  For 
biologics and genetic therapies, the public health risks can be even broader, 
particularly if a genetic change becomes inheritable.  This suggests that 
regulatory caution is appropriate until the technology develops.  Two areas 
ripe for further regulatory development are privacy and security. 
 

 141. See generally FDA, REPORTING OF COMPUTATIONAL MODELING STUDIES IN MEDICAL 
DEVICE SUBMISSIONS:  GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF 
(2016), https://www.fda.gov/media/87586/download [https://perma.cc/34Q2-TNX5]. 
 142. See generally ASME, ASSESSING CREDIBILITY OF COMPUTATIONAL MODELING AND 
SIMULATION RESULTS THROUGH VERIFICATION AND VALIDATION:  APPLICATION TO MEDICAL 
DEVICES (2018); FDA, supra note 141. 
 143. Tina M. Morrison et al., Advancing Regulatory Science with Computational Modeling 
for Medical Devices at the FDA’s Office of Science and Engineering Laboratories, FRONTIERS 
MED., Sept. 2018, at 1, 8. 
 144. Id. 
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2.  Privacy and Security Requirements at the FDA? 

The FDA’s Software Precertification Program requires the manufacturer 
to demonstrate “excellence in protecting cybersecurity and proactively 
addressing cybersecurity issues through active engagement with stakeholders 
and peers.”145  This program cross-references an IMDRF standard146 and a 
2016 FDA guidance document on cybersecurity to flesh out this 
requirement.147 

The IMDRF standard notes that security analysis can include “intrusion 
detection, penetration testing, vulnerability scanning, and data integrity 
testing” but also states that “the manufacturer should ensure that security risk 
controls do not take precedence over safety considerations.”148  It provides 
no further detail about how these goals should be accomplished. 

The FDA “Postmarket Management of Cybersecurity in Medical Devices” 
guidance provides a framework for distinguishing routine software updates 
and patches for cybersecurity purposes from device changes that need to be 
reported to the FDA.149  This guidance also recommends that manufacturers 
participate in an “Information Sharing Analysis Organization” and utilize the 
National Institute of Standards and Technology (NIST) “Framework for 
Improving Critical Infrastructure Cybersecurity.”150  The NIST framework 
is widely recognized as a gold standard for cybersecurity compliance.151  The 
FDA has also issued guidance on premarket submissions for management of 
cybersecurity in medical devices, which likewise refer to controls in the 
NIST framework, as well as an earlier guidance document on cybersecurity 
for networked devices containing off the shelf software such as database 
programs.152 

While the FDA has emphasized cybersecurity in medical devices, it has 
not issued any guidance on privacy.  The FDA’s guidance on postmarket 
management of cybersecurity in medical devices suggests that privacy issues 
are addressed under the Health Insurance Portability and Accountability Act 
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[https://perma.cc/K2RE-NH4G]. 



2019] AI IN DRUGS, BIOLOGICS, AND MEDICAL DEVICES 577 

as administered by the Department of Health and Human Services Office for 
Civil Rights.153  This represents a regulatory silo problem that should be 
addressed in relation to security, privacy, and AI in medical devices.154  
Privacy and security are intimately related.  Devices that lack adequate 
privacy safeguards are less secure and more susceptible to exploitation, 
including exploitation that comprises safety and effectiveness.  The FDA’s 
guidances on SaMD and AI therefore should include a recommendation that 
manufacturers employ “privacy by design” principles.155 

The connection between privacy, security, and safety and efficacy is 
particularly dynamic and difficult in relation to AI systems, even more so for 
systems that exchange information with a government agency.156  This was 
illustrated in 2017, for example, by the controversy over whether the 
DeepMind partnership with the Royal Free London NHS Foundation Trust, 
which allowed Google to access patient data in a trial of a kidney disease 
detection app, violated the United Kingdom’s 1998 Data Protection Act.157 

As a 2018 report by the influential AI Now Institute notes, “[t]he 
implementation of AI systems is expanding rapidly, without adequate 
governance, oversight, or accountability regimes,” and “[w]e need a sector-
specific approach that does not prioritize the technology, but focuses on its 
application within a given domain.”158  As the regulator with most immediate 
oversight over drugs and medical devices, the FDA should not simply defer 
privacy regulation to the Department of Health and Human Services or the 
Federal Trade Commission. 
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 154. Cf. Theodore T. Lee, Recommendations for Regulating Software-Based Medical 
Treatments:  Learning from Therapies for Psychiatric Conditions, 73 FOOD & DRUG L.J. 66, 
87–91 (2018) (discussing “regulatory fragmentation” relating to mobile medical apps); 
Nicolas P. Terry, Regulatory Disruption and Arbitrage in Health-Care Data Protection, 17 
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3.  Virtual Patient Models 

As noted in Part II.B above, one of the most promising developments in 
predictive analytics for drugs and devices is in the use of “virtual patient” 
models for in silico trials, and the FDA has already issued guidance on 
employing such models in device approvals.159  A “virtual patient” model 
uses data analytics to simulate an organ or system in the human body, such 
as the heart.160  A researcher can analyze, and with some models even 
visualize in three dimensions, the predicted effects of an action such as the 
introduction of a drug or medical device to the body.161  Sophisticated models 
use forms of AI to predict how the system will change over time. 

The FDA guidance recommends that applicants submit information that 
validates the computer model, such as an in vivo, ex vivo, or in vitro 
comparator or test data.162  There is no other guidance on the source, 
ownership, or use of model data.  This is another area in which the FDA 
should provide further guidance. 

Concerning the source of data for virtual patient models, the FDA should 
distinguish different kinds of models and note issues that can arise from 
biases in the selection of training data in AI models.  A model of an organ 
such as the heart seems less problematic regarding potential algorithmic bias.  
Besides exceptional cases in which a patient is kept alive with an artificial 
heart, every living human has a heart, and the organ has a well-known and 
relatively limited set of functional parameters.163  Imagine, instead, a much 
more sophisticated model of parts of the nervous system used to test the 
effects of an antidepressant or other psychotropic drug on substance abuse 
and addiction.  Addiction is both a social and a biological problem with many 
risk factors, so training data that draws from too narrow a demographic could 
skew the model’s predictions of the drug’s safety and efficacy.164 

Concerning ownership and use of model data, the FDA should note a 
preference for open-source/open-access models.165  Ideally, the FDA would 
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require that virtual patient models be open source and open access, but this 
could sit beyond the FDA’s current regulatory authority and might require 
changes to intellectual property law.  The question is important, however, 
because control over virtual patient models could significantly impact public 
health outcomes and health-care costs. 

Presently there are no intellectual property–related transaction costs to 
obtaining human test subjects for clinical trials required for FDA approval of 
drugs, biologics, or devices, and access to such test subjects is not controlled 
by any private entity.  Instead, access to human test subjects is governed by 
ethical and legal rules, including rules focused on the informed consent of 
the subject.166  This means that human clinical trials ultimately entail at least 
some level of legal accountability grounded in medical ethics and science.  
This democratic ideal, of course, is compromised by the expense and 
complexity of running a well-designed clinical trial, which is why 
manufacturers often turn to clinical research organizations (CROs) to design 
and run clinical trials.167  But neither the pharmaceutical companies nor the 
CROs own the test subjects they recruit and they cannot restrict other CROs 
from running clinical trials, whether on the same product or on other 
products. 

Imagine, instead, that a private company owns the intellectual property in 
a proprietary virtual patient model.  This intellectual property could include 
method patents relating to the modeling as well as a copyright in the model’s 
computer code.  The owner of this intellectual property could collect a license 
fee every time the model is used or could refuse to license the model for 
certain uses. 

In some ways the potential economic and ethical problems raised by this 
hypothetical resemble issues arising from the “Oncomouse” and other kinds 
of genetically engineered and traditional research tools.168  Concerning those 
technologies, the policy in the United States and in Europe is generally to 
leave cost and access issues to the market.  In fact, the prospect of intellectual 
property protection over a valuable research tool in an otherwise lightly 
regulated market provides an incentive for someone to invest in developing 
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https://www.fda.gov/patients/clinical-trials-what-patients-need-know/informed-consent-
clinical-trials [https://perma.cc/8LL9-85KH] (last updated Jan. 4, 2018). 
 167. See, e.g., Allie Nawrat, Ranking the Top Ten Clinical Research Organisations in the 
World, PHARMACEUTICAL TECH. (Sept. 26, 2018), https://www.pharmaceutical-
technology.com/features/top-ten-clinical-research-organisations/ [https://perma.cc/QX67-
WE5S]. 
 168. See generally Jerry Adler, The First Patented Animal Is Still Leading the Way on 
Cancer Research, SMITHSONIAN MAG. (Dec. 2016), https://www.smithsonianmag.com/ 
smithsonian-institution/first-patented-animal-still-leading-way-cancer-research-180961149/ 
[https://perma.cc/9Q4W-GNRE]; Michael B. Dilling & Terese L. Rakow, Licensing 
Transgenic Mice and Other Research Tools:  A Practical Guide, in 4 AUTM TECHNOLOGY 
TRANSFER PRACTICE MANUAL (3d ed. 2010), https://www.autm.net/AUTMMain/media/ 
ThirdEditionPDFs/V4/TTP_V4_ResearchTools.pdf [https://perma.cc/G3M7-8EZ7]. 
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the tool.  The social cost of the intellectual property right is the price paid to 
incentivize innovation. 

Human virtual patient models seem different, however, because ownership 
of these kinds of models suggests ownership of human characteristics that 
should remain the common property of humanity.  The policy issues here 
resemble those raised by Association for Molecular Pathology v. Myriad 
Genetics, Inc.,169 where the Supreme Court struck down a patent on naturally 
occurring genetic markers.  The Myriad Court, however, held that synthetic 
DNA could be patentable.170  Further, Myriad had nothing to do with 
copyright in computer code.  Although the copyright “idea/expression” 
dichotomy is analogous to the “product of nature” doctrine in patent law, 
code that represents a biological model is easily distinguishable from the idea 
of the model and usually should be copyrightable.171  Existing intellectual 
property law would ordinarily allow patents and copyrights relating to human 
virtual patient models.172 

Currently the FDA maintains a repository of data, models, and software 
developed by government employees and therefore not protected by 
intellectual property rights.173  At least in one instance, however, the FDA 
has encouraged a private company to develop a virtual “living heart” model 
by entering into a five-year agreement to develop testing parameters for 
cardiovascular devices using the model.174  Although this kind of partnership 
can encourage innovation, it also raises difficult questions about the use of 
public resources for basic research platforms that will be controlled by 
private entities. 

One possible approach for addressing this kind of issue is the NIH’s Public 
Access Policy, which requires that publications resulting from NIH funding 
be placed into the PubMed Central database no later than twelve months after 
the official date of publication in a peer-reviewed journal.175  The FDA could 
require that virtual patient models used for in silico trials that support a drug, 
biologic, or device approval be placed into an open-source repository upon 
marketing approval of the drug, biologic, or device. 

This would not destroy the incentives for private entities to develop such 
models because there is significant lead time between the use of a novel 
model and a product approval and because, as with the NIH’s Public Access 

 

 169. 569 U.S. 576 (2013). 
 170. Id. at 594–95. 
 171. See 17 U.S.C. § 102 (2012). 
 172. See id. 
 173. Public Domain Data, Modeling, and Software, U.S. FOOD & DRUG ADMIN., 
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 175. See NIH Public Access Policy Details, NIH PUB. ACCESS POL’Y, 
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[https://perma.cc/Q9DA-9EF8] (last updated Mar. 18, 2014). 
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Policy, a deposit in an open-source/open-access repository does not divest 
the author of copyright.176  Open-source/open-access deposits effectively 
amount to compulsory licenses for the repository to copy and distribute the 
work and, for users of the repository at least, to make such copies as are 
required to use the repository.177  However, mere access to a copyrighted 
work in an open-source/open-access repository does not authorize the user to 
make further copies or to further distribute the work.  In the case of a software 
model, a “copy” is made whenever the source code is loaded into memory, 
so an end user would still need a license to run the code.178 

At the same time, publication would allow follow-on innovators to 
examine the source code to design around elements of the program that might 
be protected by copyright, appropriate elements of the program that are not 
copyrightable or in the public domain, or negotiate licenses for refinements 
or add-ons that would constitute derivative works.179  Publication would also 
facilitate transparency and accountability.  The public, including watchdog 
groups and academic researchers, should have full access to the source code 
for any models used as the basis of public health regulatory decisions. 

D.  Proposals for the Longer Term (Twenty to Thirty Years) 

The convergence of drugs, biologics, genetics, AI, and medical devices 
will likely accelerate rapidly over the next twenty to thirty years.  Consider 
nanoscale devices that can create images and deliver drugs within individual 
cells.180  Such devices can be linked with machine learning systems to run 
diagnostic tests at the cellular and even molecular level.181  These systems 
will learn from the wealth of information being generated by “omics” 
research—the use of high-throughput technologies to identify associations 
across entire genomes, proteomes, metabolomes, epigenomes, 
transcriptomes, and microbiomes.182  Some researchers are even theorizing 
about a “human brain/cloud interface,” which they describe as a “stable, 
secure, real-time system . . . for interfacing the cloud with the human 
brain.”183 
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Nanotechnology, NANO MAG. (Aug. 22, 2018), https://nano-magazine.com/news/2018/8/22/ 
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 182. See generally Yehudit Hasin et al., Multi-omics Approaches to Disease, GENOME 
BIOLOGY, May 5, 2017, at 1. 
 183. Nuno R. B. Martins et al., Human Brain/Cloud Interface, FRONTIERS MED., Mar. 2019, 
at 1, 1. 
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1.  Regulatory Pathways 

These hybrid systems will challenge the current regulatory distinctions 
between drugs, biologics, and devices.  For example, the FDA has issued a 
guidance document on nanotechnology, which notes that “nanotechnology 
may result in product attributes that differ from those of conventionally-
manufactured products, and thus may merit particular examination” but that 
the FDA “does not categorically judge all products that involve the 
application of nanotechnology as intrinsically benign or harmful.”184  
Another draft guidance document suggests considerations regarding 
nanomaterials in drug products, including possible unique issues arising from 
the physical structure and administration of such materials.185  No current or 
draft guidance directly discusses the coming convergence of nanotechnology 
and AI, which might result in a swarm of microscopic, autonomously 
controlled devices within the body.  As these technologies mature and 
converge, the FDA may need to consider new regulatory categories, or 
Congress may need to create such categories. 

2.  Privacy 

In addition to new regulatory pathways, the acceleration of omics research 
and the convergence of drugs, devices, and AI will require even more careful 
thought about privacy, accountability, and access beyond the FDA’s remit.  
The current minimalist, sector-specific approach to federal privacy 
regulation in the United States is inadequate to the task.  We will require a 
more comprehensive data privacy and security regime such as the European 
Union’s General Data Protection Regulation (GDPR).186 

Some provisions of the GDPR, however, will be difficult to apply to AI 
systems, so the United States should not simply adopt a carbon copy of the 
GDPR.  For example, Article 22 of the GDPR states that a person has the 
right “not to be subject to a decision based solely on automated processing, 
including profiling, which produces legal effects concerning him or her or 
similarly significantly affects him or her” without the subject’s “explicit 
consent” or in some other limited circumstances.187  The European 
Commission has stressed that this provision applies to AI systems.188  

 

 184. FDA, CONSIDERING WHETHER AN FDA-REGULATED PRODUCT INVOLVES THE 
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 188. See Artificial Intelligence for Europe, § 3.3, COM (2018) 237 final (Apr. 25, 2018) 
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of AI and calls on the national data protection authorities and the European Data Protection 
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Although consent is the most obvious exception to this prohibition, it is 
difficult to know what “explicit consent” might mean in connection with 
something like a nanoscale drug delivery system that is actively learning and 
changing as it fights a disease.189 

In addition, Articles 13 and 15 of the GDPR both state that an individual 
is entitled to “meaningful information about the logic involved,” as well as 
“the significance and the envisaged consequences” of the processing of the 
subject’s data, which some commentators suggest gives data subjects a “right 
of explainability” of how an AI model works.190  Some kind of right of 
explainability is important, but its parameters need to be specified, 
particularly in relation to a system that directly affects the body.  Further, it 
is unclear whether the GDPR’s provisions regarding the data subject’s right 
to revoke consent and obtain the return of their data means that an AI system 
must be retrained without a subject’s data if that subject originally consented 
to the use of his or her data but later revokes consent.191  Finally, it is unclear 
whether the right of rectification and the right to be forgotten relate to a 
subject’s data within an AI system.192  These kinds of provisions would need 
to be clarified if the United States were to adopt a GDPR-like model. 

3.  Intellectual Property 

AI will begin to challenge intellectual property paradigms in 
pharmaceuticals and medical devices as well as privacy paradigms.  As 
therapies become more personalized based on what a predictive analytics 
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 191. In a recent opinion on clinical trials and the GDPR, the European Data Protection 
Board stated that: 

Under the GDPR, if consent is used as the lawful basis for processing, there must 
be a possibility for individuals to withdraw that consent at any time (Article 7(3)), 
and there is no exception to this requirement for scientific research.  As a general 
rule, if consent is withdrawn, all data processing operations that were based on 
consent remain lawful in accordance with the GDPR (Article 7(3)); however, the 
controller shall stop the processing actions concerned and if there is no other lawful 
basis justifying the retention for further processing, the data should be deleted by 
the controller (see Article 17(1)(b) and (3) GDPR). 

European Data Prot. Bd., Opinion 3/2019 Concerning the Questions and Answers on the 
Interplay Between the Clinical Trials Regulation (CTR) and the General Data Protection 
Regulation (GDPR) (art. 70.1.b) 6–7 (Jan. 23, 2019), https://edpb.europa.eu/sites/edpb/ 
files/files/file1/edpb_opinionctrq_a_final_en.pdf [https://perma.cc/3BMT-BYEU] (footnote 
omitted). 
 192. See GDPR, supra note 186, at 36–37, 43–44; Burt, supra note 189. 



584 FORDHAM LAW REVIEW [Vol. 88 

system says about an individual patient’s genome, for example, compared to 
known variations, the patent-based blockbuster pharmaceutical model will 
begin to diminish.  The intellectual property in the AI system will start to 
become as important as the intellectual property in the chemical formula of 
a drug.  The convergence of drugs, biologics, and devices will accelerate this 
trend.  The medical device market is already so diverse and segmented, and 
the pace of change so rapid, that the blockbuster drug model centered on a 
single unique patented formula does not apply in the same way as for 
drugs.193  The biologics market is growing rapidly, but the complexity of 
biologic molecules and the law restricting the patentability of naturally 
occurring genetic sequences could limit the extent to which a drug-like 
blockbuster cycle develops.194  Even with drugs, if high-throughput 
screening and in silico trials significantly reduce the time and expense of 
finding suitable drug candidates, the blockbuster model should further 
fracture.  These market dynamics in relation to intellectual property mean 
that pharmaceuticals and medical devices will start to look like Silicon Valley 
industries as much as traditional life science industries.  Indeed, as Google’s 
acquisition of DeepMind shows, Silicon Valley is eager to enter this space.195 

From an intellectual property policy perspective, this dynamic will raise 
some difficult challenges.  Patents are important in the AI space.  As a recent 
World Intellectual Property Organization report notes, “50 percent of all AI 
patents have been published in just the last five years—a remarkable 
illustration of how rapidly innovation is advancing in this field.”196  The 
importance of drug patents to public health prompted the adjustments found 
in the Hatch-Waxman Act, including the ability of generic manufacturers to 
challenge drug patents without incurring the risk of damages.197  A related, 
though more complicated, mechanism was adopted as part of the Biologics 
Price Competition and Innovation Act of 2009.198  It is unclear whether a 
similar procedure should exist for AI patents that would apply to drugs, 
biologics, or devices, but we should begin having the conversation, 
particularly concerning AI-based SaMD or devices incorporating AI 
approved by the FDA. 
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Even more troubling, because AI is constructed with software code, 
copyright law also will apply.  Presently there are debates about whether 
works created by an AI without direct human input can qualify for copyright 
protection, and the answer to that question so far seems to be no, although 
the law is unsettled.199  There is no doubt, however, that the human-made 
code and algorithms that comprise the baseline AI system are copyrightable 
just like any computer code.200 

Copyrights last longer and are harder to challenge than patents.  Patents 
generally last twenty years from the date of the patent application and can be 
challenged if they are not novel or nonobvious over the prior art, as well as 
on other technical grounds.201  Copyrights in the United States last for the 
life of the author plus seventy years or, for works made for hire, for ninety-
five years from first publication or 120 years from creation, whichever 
expires first.202  Access to AI systems also can be protected by technological 
measures such as encryption, which invokes the anticircumvention 
provisions of the Digital Millennium Copyright Act.203  The notion that a 
system being developed today could become vital to public health and might 
be controlled under copyright and paracopyright by a private commercial 
entity well into the next century is frightening.  We need to consider a 
compulsory licensing mechanism for AI copyrights that become vital to 
public health.204 

Finally, AI technology can be protected by trade secret law.  A company 
might choose to patent some parts of its AI technology and to keep other 
parts secret.205  While a patent disclosure destroys a trade secret claim for 
anything disclosed in the patent, copyright does not require public disclosure.  
Copyright protection subsists without registration, and even if registration is 
sought, the applicant can deposit software code without disclosing trade 
secrets.206  Trade secrecy in the initial AI code compounds the “black box” 
problem—the fact that, once an AI system begins learning, it can become 
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difficult or even impossible to determine the basis for its decisions.207  As 
noted above, current FDA draft guidance states that “good machine learning 
practices” require the explainability of results, and the European Union’s 
GDPR also appears to contain a “right of explainability.”208  Whether 
through the FDA or otherwise, we should consider rules that require public 
disclosure notwithstanding trade secret claims when an AI system is critical 
to public health. 

E.  AI Enabled Drugs and Devices:  2050 

How will AI impact health care by the year 2050?  In their book The 
Second Machine Age, Erik Brynjolfsson and Andrew McAfee argue that 
computing technologies such as AI will continue to improve logarithmically 
and that the “second half of the chessboard” will bring both dramatic 
increases in overall prosperity and dramatic increases in the “spread” 
between the poor and the well-off.209  Of course, no one knows if Moore’s 
Law will continue to hold, never mind how war, pandemic, climate change, 
or other disasters might impact the future, but let us assume for a moment 
that Brynjolfsson and McAfee are at least partly correct.210 

One possibility is that AI will become smarter than humans, perhaps even 
self-aware, and it will be impossible for humans to control the AI 
“singularity.”211  If that is the case, there is little that can be done to plan for 
it, and it likely will either comprise an unprecedented boon or an apocalyptic 
disaster for humanity.  Most AI scientists, however, do not believe an AI 
“singularity” is likely any time in the next century, if ever.212 

Hype about the “singularity” aside, it is possible that by 2050 the available 
volume of global health data collected through connected devices and other 
sensors together with more powerful algorithms could provide 
comprehensive and accurate predictions about what kinds of research 
programs and technological investments would yield the most benefits with 
the least costs in terms of global public health.213  At the same time, advances 
in AI and other technologies will facilitate not only health remediation and 
disease prevention but also human enhancement assisted by predictive 
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algorithms about the future risks and benefits of such enhancements.214  
These prospects should challenge our current economic paradigm for drug 
and device development. 

One of the proposed moral justifications advanced for leaving most 
applied drug and device research to private markets is that consumer demand 
is a better proxy for public health needs than centralized government 
planning.215  There are of course some good and well-known reasons for this 
belief:  resource limitations, agency costs, corruption, and other 
inefficiencies can impair regulatory resource allocations, while markets are 
supposed to be self-correcting.216  Even so, there is no such thing as a truly 
free, efficient market for health care, including drugs and medical devices.217  
In particular, for drugs, price elasticity of demand rather than global public 
health needs determines where resources are invested and who has access to 
treatment.218  Given the global public health burden of diseases such as 
malaria and tuberculosis, which mostly affect poor parts of the world, the 
moral case is tenuous at best.219  Nevertheless, given the enormous sunk costs 
of drug development and the limits of existing predictive models, there is 
some moral justification for a privatized pharmaceutical industry founded on 
patents. 

If AI both brings development costs down and increases the accuracy of 
public health outcome predictions, however, that justification may evaporate.  
At the same time, as noted above, intellectual property rights in AI systems 
could further cement the capacity of a small number of large private 
technology companies to direct the course of public health policy.  If we 
believe health care really is a human right, we should seize the present 
opportunity to imagine a world in which AI enables more equitable access to 
treatments rather than furthering the divide between rich and poor. 

Many AI theorists recognize that over the long term, AI will raise these 
sorts of big questions about global equity.  The highly regarded “Asilomar 
AI Principles,” for example, state that “AI technologies should benefit and 
empower as many people as possible,” “[t]he economic prosperity created by 
AI should be shared broadly, to benefit all of humanity,” and 
“[s]uperintelligence should only be developed in the service of widely shared 
ethical ideals, and for the benefit of all humanity rather than one state or 
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organization.”220  A recent report, “Ethics Guidelines for Trustworthy AI,” 
prepared by an independent working group of the European Commission 
similarly suggests that “[t]he development, deployment, and use of AI 
systems must be fair,” including “equal and just distribution of both benefits 
and costs.”221  These remain high-level exhortations, however, with little 
concrete reflection on how they might apply to specific sectors such as 
pharmaceuticals and medical devices. 

Indeed, such statements about distributive justice sit in some tension with 
current governmental policies designed to promote the growth of private AI 
industries.  The European Commission’s communication “Artificial 
Intelligence for Europe,” for example, focuses at least as much on developing 
a private European AI industry as on ethical principles.222  In the United 
States, the first line of President Trump’s February 11, 2019 executive order 
entitled “Maintaining American Leadership in Artificial Intelligence” states 
that “Artificial Intelligence (AI) promises to drive growth of the United 
States economy, enhance our economic and national security, and improve 
our quality of life.”223  At the same time, both the European Union and the 
United States have begun work on programs to open public sector 
information for use in AI health-care research, framed not only in terms of 
public health but also in terms of boosting the health-care industry sector.224 

Although the prospect seems politically impossible in our current 
environment, this suggests that a conversation about AI in drug and medical 
device development should happen at the international level.  In 1994, the 
World Trade Organization’s Trade Related Aspects of Intellectual Property 
(TRIPS) treaty encoded minimum standards for national patent laws that 
strongly favored multinational pharmaceutical companies in the United 
States and Europe, to the detriment of the global South, and specifically 
responded to the growing generic industry in India.225  Only later were 
compulsory licensing provisions for the benefit of developing countries 
clarified, and those provisions have largely proved too clumsy and 
complicated to be useful.226  While there has been discussion of the risks of 
“AI arms proliferation” and of an “AI arms treaty,” there has been little 
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discussion of an AI health or intellectual property treaty.227  That discussion 
should begin in earnest.  At the very least, such a treaty should provide 
minimum standards for compulsory licenses on intellectual property in AI 
for pharmaceutical and medical products and should include clear exceptions 
to intellectual property and related technological anticircumvention rights in 
such products for public health research. 

CONCLUSION 

AI is already impacting the development and function of drugs, biologics, 
and medical devices.  The trend towards convergence of these products, 
assisted by AI, will accelerate rapidly in coming years.  In the United States, 
the FDA already has taken important steps toward incorporating in silico 
trials and evaluating the use of AI in SaMD and other medical devices.  The 
FDA could do more, however, to ensure that AI in pharmaceuticals and 
medical devices reflect “privacy by design” principles and is accessible 
through open-source and open-access publishing models.  Over the coming 
decades, AI could significantly disrupt the already fragile blockbuster model 
of pharmaceutical development and shift the drug, biotech, and medical 
device industries away from their life sciences roots and toward Silicon 
Valley.  Congress should consider new regulatory models to address the 
related intellectual property, privacy, and accountability issues these changes 
will entail.  By 2050, even aside from an unlikely AI “singularity,” advances 
in AI could herald a new era in which goals of distributive justice relating to 
global public health could be more fully realized—if public policy prompts 
a shift away from entrenched intellectual property models that could increase 
current disparities in health care between rich and poor.  Over the longer 
term, we need a new international AI treaty regime that accounts for public 
health values. 
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